
AUTOMATED SYSTEMS
Original Paper
UDC 622.016:658.012.011.56 АСУ © R.K. Khalkechev 1, Yu.M. Levkin 2, E.D. Nikitin 1, 2024
ISSN 0041-5790 (Print) • ISSN 2412-8333 (Online) • Ugol’ – Russian Coal Journal, 2024, № 10, pp. 122-124
DOI: http://dx.doi.org/10.18796/0041-5790-2024-10-122-124
Title
ALGORITHM FOR DETERMINING THE NATURAL STRESS FIELD IN COAL-BEARING ROCK MASSES
Authors
R.K. Khalkechev 1, Yu.M. Levkin 2, E.D. Nikitin 1
1 National University of Science and Technology MISIS (NUST MISIS), Moscow, 119049, Russian Federation
2 Moscow Polytechnic University, Moscow, 107023, Russian Federation e-mail: syrus@list.ru.
Authors Information
Khalkechev R.K. – doctor of Physico-Mathematical Science, doctor of Engineering Science, Professor, department of geology and mine Surveying, National university of Science and technology MISIS (NuSt MISIS), Moscow, 119049, Russian Federation, e-mail: syrus@list.ru
Levkin Yu.M. – doctor of Engineering Science, Member of the Russian union of Surveyors, Professor of the department of Mining and Oil and gas Production technique and technology, Moscow Polytechnic university, Moscow, 107023, Russian Federation, e-mail: lev5353@bk.ru
Nikitin E.D. – Postgraduate student of the department of Infocommunication technologies, National university of Science and technology MISIS (NuSt MISIS), Moscow, 119049, russian federation, e-mail: egornd1998@gmail.com
Abstract
An analysis of existing scientific works shows that the adequacy of mathematical models of the stress-strain state for rock masses largely depends on the accuracy of the determined components of the natural stress field. In the present article, a new algorithm is proposed that increases the accuracy of the values of the natural stress field in coal-bearing rock masses. This algorithm is based on the following procedure. First, the parameters included in the corresponding mathematical models are determined. Then, using this set of mathematical models, a set of values for the tensor of the natural stress field is calculated. Finally, using the method of successive approximations, the value of the natural stress field that most accurately describes the state of the researched section of the rock mass is determined. The use of the developed algorithm as part of the mathematical support in automated control systems used in the coal industry will improve the productivity and safety of mining.
Keywords
Algorithm, in-situ stress field, model adequacy, stress tensor, coal-bearing rock mass, automated system, technological process, iterative procedure.
References
1. Wang Z., Wang H., Wang J., Tian N. Finite element analyses of constitutive models performance in the simulation of blast-induced rock cracks. Computers and Geotechnics. 2021;(135):104172. DOI: 10.1016/j.compgeo.2021.104172.
2. Abousleiman R., Walton G., Sinha S. Understanding roof deformation mechanics and parametric sensitivities of coal mine entries using the discrete element method. International Journal of Mining Science and Technology. 2020;(30):123-129. DOI: 10.1016/j.ijmst.2019.12.006.
3. Eremin M., Esterhuizen G., Smolin I. Numerical simulation of roof cavings in several Kuzbass mines using finite-difference continuum damage mechanics approach. International Journal of Mining Science and Technology. 2020;(30):157-166. DOI: 10.1016/j.ijmst.2020.01.006.
4. Кузин Е.А., Халкечев К.В. Определение управляющих пространственно-геометрических параметров устойчивых горных выработок // Уголь. 2020. № 9. С. 65-67. DOI: 10.18796/0041-57902020-9-65-67. Kuzin E.A., Khalkechev K.V. Determination of control spatial and geometric parameters of stable mine workings. Ugol’. 2020;(9):65-67. (In russ.). DOI: 10.18796/0041-5790-2020-9-65-67.
5. Математическое обеспечение информационной системы анализа процесса разрушения трещиноватой кровли на угольных месторождениях / Р.К. Халкечев, К.В. Халкечев, Ю.М. Левкин и др. // Уголь. 2023. № 12. С. 64-66. dOI: 10.18796/0041-5790-202312-64-66. Khalkechev R.K., Khalkechev K.V., Levkin Yu.M., Kuzmenko S.Yu. Matematical support of the information system for analyzing the process of fractured roof destruction in coal fields. Ugol’. 2023;(12):6466. (In russ.). DOI: 10.18796/0041-5790-2023-8-64-66.
6. Халкечев К.В., Халкечев Р.К., Левкин Ю.М. Математическая модель поля напряжений в целиках с учетом магистральной трещины на угольных месторождениях // Уголь. 2023. № 7. С. 56-58. DOI: 10.18796/0041-5790-2023-7-56-58.
Khalkechev K.V., Khalkechev R.K., Levkin Yu.M. Mathematical model of the stress field in the pillars with due account taken of the main crack in coal fields. Ugol’. 2023;(7):56-58. (In russ.). DOI: 10.18796/0041-5790-2023-7-56-58.
7. Кузин Е.А., Халкечев К.В. Математическая модель определения формы устойчивого целика поликристаллической структуры в углевмещающих породах // Уголь. 2020. № 2. С. 22-25. dOI: 10.18796/0041-5790-2020-2-22-25. Kuzin E.A., Khalkechev K.V. Mathematical model for determining the shape of a stable pillar of a polycrystalline structure in carbonbearing rocks. Ugol.’ 2020;(2):22-25. (In russ.). DOI: 10.18796/0041- 5790-2020-2-22-25.
8. Нечеткая модель определения формы устойчивого целика в углевмещающих породах / Р.К. Халкечев, Ю.М. Левкин, К.В. Халкечев и др. // Уголь. 2024. № 1. С. 61-63. DOI: 10.18796/0041-57902024-1-61-63. Khalkechev R.K., Levkin Y.M., Khalkechev K.V., Kuzmenko S.U. Fuzzy model of the shape determining of a stable pillar in coal-bearing rocks. Ugol’. 2024;(1):61-63. (In russ.). DOI: 10.18796/0041-57902024-1-61-63.
9. Халкечев К.В. Нелинейная математическая модель динамической системы трещиноватости в минералах углевмещающих горных пород // Уголь. 2019. № 10. С. 92-94. dOI: 10.18796/00415790-2019-10-92-94. Khalkechev K.V. Nonlinear mathematical model of the fracturing dynamic system in minerals of coal-bearing rocks. Ugol’. 2019;(10):9294. (In russ.). DOI: 10.18796/0041-5790-2019-10-92-94.
10. Турчанинов И.А., Иофис М.А., Каспарьян Э.В. Основы механики горных пород. Л.: Недра, 1977. 503 с.
11. Amadei B., Stephansson O. Rock stress and its measurement. Berlin, Springer, 1997, 490 p. DOI: 10.1007/978-94-011-5346-1.
12. Li X.P., Zhou X.J., Xu Z.X., Feng T., Wang D., Deng J.H., Zhang G.Z., Li C.B., Feng G., Zhang R., Zhang Z.l., Zhang Z.T. Inversion method of initial in situ stress field based on BP neural network and applying loads to unit body. Advanced Civil Engineering. 2020:1-15. DOI: 10.1155/2020/8840940.
For citation
Khalkechev r.K., Levkin Yu.M., Nikitin E.D. Algorithm for determining the natural stress field in coal-bearing rock masses. Ugol’. 2024;(10):122-124. (In russ.). DOI: 10.18796/0041-57902024-10-122-124.
Paper info
Received June 24, 2024
Reviewed September 16, 2024
Accepted September 26, 2024