DIGITIZATION
Original Paper
UDC 622.33:004.89 © N.L. Krasyukova, I.A. Rozhdestvenskaya, A.Z. Zubets, I.A. Bartoshevich, E.I. Voronova, 2024
ISSN 0041-5790 (Print) • ISSN 2412-8333 (Online) • Ugol’ – Russian Coal Journal, 2024, № 9, pp. 101-108
DOI: http://dx.doi.org/10.18796/0041-5790-2024-9-101-108
Title
THE USE OF NEURAL NETWORK TECHNOLOGIES TO OPTIMIZE THE PROCESSES OF COAL MINING AND PROCESSING IN THE COAL INDUSTRY
Authors
N.L. Krasyukova, I.A. Rozhdestvenskaya A.Z. Zubets, I.A. Bartoshevich, E.I. Voronova
Financial University under the Government of the Russian Federation, Moscow, 125993, Russian Federation, e-mail: NLKrasyukova@fa.ru
Authors Information
Krasyukova N.L. – Doctor of Economics Sciences, Professor of the Department of State and Municipal
Administration, Financial University under the Government of the Russian Federation, Moscow, 125993, Russian Federation, e-mail: NLKrasyukova@fa.ru
Rozhdestvenskaya I.A. – Doctor of Economics Sciences, Professor of the Department of State and Municipal
Administration, Financial University under the Government of the Russian Federation, Moscow, 125993, Russian Federation, e-mail: IAR ozhdestvenskaya@fa.ru
Zubets A.Zh. – PhD (Economics), Associate Professor of the Department of State and Municipal Administration,
Financial University under the Government of the Russian Federation, Moscow, 125993, Russian Federation, e-mail: AZZubets@fa.ru
Bartoshevich I.A. – Assistant at the Department of State and Municipal Administration, Financial University under the Government of the Russian Federation, Moscow, 125993, Russian Federation, e-mail: iabartoshevich@fa.ru
Voronova E.I. – Assistant at the Department of State and Municipal Administration, Financial University under the Government of the Russian Federation, Moscow, 125993, Russian Federation, e-mail: EIShayuk@fa.ru
Abstract
The article discusses the use of neural network technologies to optimize the processes of coal mining and processing at coal industry enterprises. The research is aimed at developing a comprehensive methodology for the implementation of neural networks and evaluating its technical, economic and environmental effectiveness. Research methods include the analysis of existing examples of the use of AI in the coal industry, the development of neural network models for optimizing coal mining and processing processes, evaluating their effectiveness on real data, as well as strategic planning of implementation, taking into account the specifics of enterprises. The results demonstrate the significant potential of neural network technologies to improve the efficiency, safety and environmental friendliness of the coal industry. The developed models make it possible to optimize the parameters of drilling and blasting operations, excavation and loading operations, modes of operation of processing equipment, and provide automated product quality control. The introduction of neural networks contributes to the growth of technical and economic indicators, reduction of emissions and rational use of resources. The prospects for further research related to predicting emergencies, optimizing logistics, monitoring the condition of equipment and the socio-economic effects of digitalization of the coal industry are discussed.
Keywords
Neural network technologies, coal industry, optimization, coal mining, coal processing, efficiency, artificial intelligence.
References
1. Boeing a., douglas E. remotely operated robotic rock breaker with collision avoidance for the mining industry. AusIMM Bulletin. 20154(3).
2. Correa M., C?rdenas d., Carvajal d., ruiz-del-Solar J. haptic teleoperation of Impact hammers in underground Mining. Appl. Sci. 2022;(12):1428. https://doi.org/10.3390/ app12031428.
3. li J.-g., Zhan K. Intelligent mining technology for underground metal mine based on unmanned equipment. Engineering. 2018;(4):381391. https://doi.org/10.1016/j.eng.2018.05.013.
4. Mascar? M., Parra-tsunekawa I., tampier C., ruiz-del-Solar J. topological Navigation and localization in tunnels-application to autonomous load-haul-dump Vehicles Operating in underground Mines. Appl. Sci. 2021;(11):6547. https://doi.org/10.3390/ app11146547.
5. Musaev t., Shageev S., fedorov O. Intelligent measuring system’s data usage in electricity rate pricing process. Lecture Notes in Electrical Engineering. 2021;(729)lNEE:933-941. dOI: 10.1007/978-3-030-71119-1-90.
6. rybak J., Ivannikov a., Egorova a., Ohotnikova K. fernandes I. Some remarks on experience based geotechnical education. 17th International Multidisciplinary Scientific geoConference SgEM 17. 2017. Vol. 12, pp. 1003-1012. dOI: 10.5593/sgem2017/12/S02.127.
7. Баев И.А., Соловьева И.А., Дзюба А.П. Управление затратами на услуги по передаче электроэнергии в промышленном регионе // Экономика региона. 2018. Т. 14. № 3. С. 955-969. dOI: 10.17059/2018-3-19. Baev I.a., Solovyeva I.a., dzyuba a.P. Cost-effective management of electricity transmission in an industrial region. Еkonomika regiona, 2018;14(3):955-969. (In russ.). dOI: 10.17059/2018-3-19.
8. Верчеба А.А. Подготовка кадров для горно-геологической отрасли России // Горные науки и технологии. 2021. Т. 6. № 2. С. 144-153. dOI: 10.17073/25000632-2021-2-144-153. Vercheba a.a. Personnel training for the mining and geological sec? tor of russia. Gornye nauki i tehnologii. 2021;6(2):144-153. (In russ.). dOI: 10.17073/25000632-2021-2-144-153.
9. Волотковская Н.С., Волотковская Ю.А., Семенов А.С. Мировой рынок энергетических ресурсов: анализ производства и спроса на энергоносители, перспективы сектора // Современ? ная наука: актуальные проблемы теории и практики. Серия: Экономикаиправо. 2020. № 6. С. 12-17. dOI: 10.37882/22232974.2020.06.03. Volotkovskaya N.S., Volotkovskaya yu.a., Semenov a.S. the global energy market: analysis of energy production and demand, sec? tor prospects. Sovremennaya nauka: aktual'nye problemy teorii i praktiki. Seriya: Ekonomika i pravo. 2020;(6):12-17. (In russ.). dOI: 10.37882/2223-2974.2020.06.03.
10. Каплунов Д.Р., Милкин Д.А. Исследование влияния способа управления качеством минерально-сырьевых потоков на параметры горнотехнических систем комбинированной геотехнологии. В: Комбинированная геотехнология: комплексное освоение и сохранение недр Земли: материалы науч.-практ. конф., г. Екатеринбург, 22-26 июня 2009 г. Магнитогорск: МГТУ им. Г.И. Носова, 2009. С. 45-47.
11. Построение информационной модели горно-обогатительных предприятий / И.Е. Кириллов, И.Н. Морозов, П.М. Мурашев и др. // Вестник Московского университета МВД России. 2021. № 2. С. 288-291. dOI: 10.24412/2073-0454-20212-288-291. Kirillov I.E., Morozov I.N., Murashev P.M., Bogatikov V.N. Building an information model for mining and processing enterprises. Vestnik Moskovskogo universiteta MVD Rossii. 2021;(2):288-291. (In russ.). dOI: 10.24412/2073-0454-20212-288-291.
12. Климов И.Ю. Анализ эффективности реализации компетентностного подхода в программе опережающего обучения горнодобывающей компании // Горные науки и технологии. 2020. Т. 5. № 1. С. 56-68. dOI: 10.17073/2500-0632-2020-1-56-68. Klimov I.yu. analysis of soft skills-based approach effectiveness in ad? vanced training program for mining company. Gornye nauki i tehnologii. 2020;5(1):56-68. (In russ.). dOI: 10.17073/2500-0632-2020-1-56-68.
13. Интеллектуальные системы учета как инструмент снижения потерь электрической энергии / Т.А. Мусаев, О.В. Федоров, С.Р. Ша? геев и др. // Строительство: новые технологии – новое оборудование. 2021. № 2. С. 52-55. Musaev t.a., fedorov O.V., Shageev S.r., Prokhorova M.V. Smart metering systems as a tool to reduce electricity losses. Stroitel’stvo: novye tehnologii, novoe oborudovanie. 2021;(2):52-55. (In russ.).
14. РыльниковА.Г., ПыталевИ.А. Цифроваятрансформациягор?нодобывающейотрасли: техническиерешенияитехнологи?ческиевызовы // ИзвестияТульскогогосударственногоуни?верситета. НаукиоЗемле. 2020. № 1. С. 470-481. https://doi. org/10.46689/2218-5194-2020-1-1-470-481. rylnikov a.g., Pytalev I.a. digital transformation of the mining industry: technical solutions and technological challenges. Izvestiya Tul'skogo gosudarstvennogo universiteta. Nauki o Zemle. 2020;(1):470481. (In russ.). https://doi.org/10.46689/2218-5194-2020-1-1-470-481.
15. Цифровая трансформация – условие и основа устойчивого развития горнотехнических систем / М.В. Рыльникова, К.И. Стру? ков, Д.Н. Радченко и др. // Горная промышленность. 2021. № 3. С. 74-78. https://doi.org/10.30686/1609-91922021-3-74-78.rylnikova M.V., Strukov K.I., radchenko d.N., Esina E.N. digital transformation: a prerequisite and foundation for sustainable development of mining operations. Gornaya promyshlennost'. 2021;(3):74-78. (In russ). https://doi.org/10.30686/1609-91922021-3-74-78.
16. Условия и проблемы обеспечения устойчивой работы горнодобывающих предприятий в период пандемии / К.И. Струков, Ю.И. Рябов, М.В. Рыльникова и др. // Известия Тульского государственного университета. НаукиоЗемле. 2020. № 4. С.15-23. Strukov K.I., ryabov yu.I., rylnikova M.V., Esina E.N. Conditions and problems to ensure stable operation of mining enterprises in the pandemic period. Izvestiya Tul'skogo gosudarstvennogo universiteta. Nauki o Zemle, 2020;(4):15-23. (In russ).
17. ХазинМ.Л. Роботизированнаятехникадлядобычиполезныхископаемых // Вестникмагнитогорскогогосударственноготехническогоуниверситетаим. Г.И. Носова. 2020. Т. 18. № 1. С. 4-15. https://doi>.org/10.18503/1995- 2732-2020-18-1-4-15. Khazin M.l. robotic equipment for mining operations. Vestnik Magnitogorskogo gosudarstvennogo tehni?eskogo universiteta im. G.I. Nosov. 2020;18(1):4-15. (In russ.). https://doi.org/10.18503/1995- 27322020-18-1-4-15.
For citation
Krasyukova N.L., Rozhdestvenskaya I.A., Zubets A.Zh., Bartoshevich I.A., Voronova E.I. The use of neural network technologies to optimize the processes of coal mining and processing in the coal industry. Ugol. 2024;(9):101 108. (In Russ.). DOI: 10.18796/0041-5790-2024-9-101-108.
Paper info
Received August 8, 2024
Reviewed August 15, 2024
Accepted August 26, 2024