hi boy
"Ugol" magazin


Original Paper

UDK 622.673.2 © E.G. Kassikhina*, D.Yu. Sirota, 2024

ISSN 0041-5790 (Print) • ISSN 2412-8333 (Online) • Ugol’ – Russian Coal Journal, 2024, № 4, pp. 92-97

DOI: http://dx.doi.org/10.18796/0041-5790-2024-4-92-97




E.G. Kassikhina*, D.Yu. Sirota

T.F. Gorbachev Kuzbass State Technical University, Kemerovo, 650000, Russian Federation, e-mail kalena-07@mail.ru

Authors Information

Kassikhina E.G., PhD (Engineering), Associate Professor of the Departament of Physical processes and construction geotechnology of subsurface development, T.F. Gorbachev Kuzbass State Technical University, Kemerovo, 650000, Russian Federation, e-mail kalena-07@mail.ru

Sirota D.U., PhD (Engineering), Associate Professor of the Departament of Physical processes and construction geotechnology of subsurface development, T.F. Gorbachev Kuzbass State Technical University, Kemerovo, 650000, Russian Federation


The existing calculations of the structural elements of steel headframes include the calculation of the headframe, which is reduced to the determination of internal forces with subsequent checks for limit states by analogy with beams of constant cross section. Since bending moments usually vary unevenly along the length of the jib, selecting its cross section according to the largest bending moment, an excess supply of material is obtained in all sections of the jib, except for the one that corresponds to the maximum value of the moment. This approach does not make it possible to obtain a design with a minimum material consumption, since the cross section is constant along the entire length of the jib and is designed for maximum efforts characteristic of only a small area.

To obtain a rational cross section of the jib, it is necessary to strive to ensure that, if possible, the largest volume of material works at stresses equal to or close to the allowable ones. In the proposed jib with a section variable in height, efficiency is achieved by optimizing its dimensions in accordance with the diagrams of internal forces. To calculate such structures, the method of splitting the entire element into smaller rod elements of constant stiffness is used. Most of the software packages for structural analysis do not have the possibility of automated input for such sections. It is necessary to justify the choice of various options for design solutions for the formation of a block of input parameters for automated calculation for jibs of variable cross section.

The scientific significance of the proposed technical solution lies in the fact that a space of mutually influencing design variables has been formed in relation to the problem of minimizing the weight of the multifunctional pile driver jib structure. A formula is obtained for determining the set of pairs of optimal values of independent design variables, applicable for the formation of a block of input parameters for automated calculation of jibs of variable cross section.

The practical significance lies in the implementation of a simplified search for the optimal parameters of the jib cross section by visual analysis of the obtained graphs, which makes it possible to obtain a variety of acceptable alternative designs within the established design criteria.The main stimulus for the study of the jib was the calculation of significant characteristics for a variety of combinations of section parameters in order to minimize its weight. The results of the study are used to assess the adequacy of design alternatives and their relative merits based on established design criteria. 


Steel angle headframe, multifunctional steel angle headframe, jib variable cross-section height.


1. Kassikhina E.G., Pershin V.V., Glazkov J.F. New Technical Solution for Vertical Shaft Equipping Using Steel Headframe of Multifunction Purpose. E3S Web of Conferences, IInd International Innovative Mining Symposium, 1, Russian Federation Year of Environment, 2017. DOI: https://doi.org/10.1051/e3sconf/20172101007.

2. Кассихина Е. Г. Новая конструктивная форма надшахтного копра многофункционального назначения // Горный журнал. 2017. № 8. С. 56-60.

Kassikhina E.G. New structural form of a multi-purpose mine head gear. Gornyj zhurnal. 2017;(8):56-60. (InRuss.).

3. Русских А.Г. Практические аспекты обследования надшахтных копров // Международный научно-исследовательский журнал. 2016. № 9. Часть 4. С. 17-20. DOI: https://doi.org/10.18454/IRJ.2016.51.103.

Russkikh A.G. Practical aspects of inspection mine headgear. Mezhdunarodnyj nauchno-issledovatel?skij zhurnal. 2016;(9)Part 4:17-20. (In Russ.). DOI: https://doi.org/10.18454/IRJ.2016.51.103.

4. Butler D.W., Schneyderberg A.C. Headframe selection - steel vs. concrete [J]. Mining Congress Journal. 1982;7:1,15.

5. Edwards F.A. Hoisting systems. SME Mining engineering handbook Society for Mining, Metallurgy, and Exploration. 1992;(2).

6. Rojas-Sola J.I., Montalvo-Gil J.M., Castro-Garcia M. 3D modeling and functional analysis of a headframe for mineral extraction. Dyna. 2013;80(181):118-125.

7. Nechytailo A.Ye., Horokhov Ye.V., Kushchenko V.N. Analysis of the mode of deformation of the sub-pulley structures on shaft sloping headgear structures. 18th International Conference on the Application of Computer Science and Mathematics in Architecture and Civil Engineering 1, Weimar, 2009.

8. Hartman H.L., Mutmansky J.M. Introductory Mining Engineering,John Wiley and Sons. 2002, 592 p.

9. Hartman H.L., Britton S.G., Mutmansky J.M. SME Mining Engineering Handbook, Society for Mining, Metallurgy, and Exploration, 1992.

10. Ross I. Goldcorp going electric with Chapleau gold mine. Northern Ontario Business, 2016.


11. Rojas-Sola J.I., Palomares-Mu?oz I. 3D modelling and static analysis of a Spanish articulated metal headframe for mineral extraction. Dyna. November 2015.

12. Kelly L. Historical end. Northern Ontario business. 34:3, 31. 2014.

13. Ernst-Ulrich Reuther. Einf?hrung in den Bergbau, 1, 34 Auflage, Verlag Gl?ckauf GmbH. Essen, 1992.

14. Ernst-Ulrich Reuther. Lehrbuch der Bergbaukunde. Erster Band, 12, 37 Auflage, VGE Verlag GmbH, Essen,2010.

15. Ernst Richard. W?rterbuch der Industriellen Technik. Wiesbaden, OscarBrandstetter, 1989.

16. Кассихина Е.Г., Русакова Н.А. Определение рациональной формы укосины для стальных укосных копров многофункционального назначения // Уголь. 2022. № 10. С. 55-59 DOI: 10.18796/0041-5790-2022-10-55-59.

Kassikhina E.G., Rusakova N.A. Rational jib form determining for the multi-purpose steel headframes. Ugol’. 2022;(10):55-59. (In Russ.). DOI: 10.18796/0041-5790-2022-10-55-59.

17. ПиндайкР., РабинфельдД. Микроэкономика. СПб.: Питер, 2011. 608 с.

18. Зорич В.А. Математический анализ. М.: МЦНМО, 2012. 720 с.

19. Пантелеев А.В., Летова Т.А.  Методы оптимизации в примерах и задачах. М.: Высшая школа, 2005. 544 с. 

20. Аттетков А.В., Зарубин В.С., Канатников А.Н. Введение в методы оптимизации. М.: Финансыистатистика, 2008.  270 с. 

For citation

Kassikhina E.G., Sirota D.Yu. Parameteroptimization of the jib cross-section for the multi-purpose steel head frames. Ugol’. 2024;(4):92-97. (In Russ.). DOI: 10.18796/0041-5790-2024-4-92-97.

Paper info

Received November 22, 2023

Reviewed February 28, 2024

Accepted March 26, 2024


Hot from the press