hi boy
"Ugol" magazin


Original Paper

UDC 622.807 ©A.A. Rybichev, 2023

ISSN 0041-5790 (Print) • ISSN 2412-8333 (Online) • Ugol’ – Russian Coal Journal, 2023, № 2, pp. 41-44

DOI: http://dx.doi.org/10.18796/0041-5790-2023-2-41-44




Rybichev A.A.1

1National University of Science and Technology “MISIS” (NUST “MISIS”), Moscow, 119049, Russian Federation

Authors Information

Rybichev A.A., Postgraduatestudent, e-mail: rybichev@yandex.ru


Tabular data on the main properties of saturated and unsaturated hydrocarbons, toxic combustible gases, which are the main explosive components of the mine atmosphere, are given. According to literary sources, it has been established that with a decrease in particle size, the lower concentration limit of explosibility of coal dust can decrease by up to 5.8 times. The explosive properties of ternary mixtures (coal dust + methane + air) are considered. It is shown that when the content of methane in the atmosphere is 2%, the lower explosive limit of coal dust can be reduced by 4 times. The potential fire and explosion hazard of coal seam gases is due to the presence of methane and its homologues (heavy hydrocarbons) in them, which, compared with methane, are more fire and explosion hazardous, since they have lower ignition temperatures and a lower concentration explosive limit.

Key words

Methane, Heavy hydrocarbons, Dust-methane-air mixture, Gas and dust explosion, Explosive limit.


1. Tarasenko I.A., Kulikova A.A. & Kovaleva A.M. On the issue of assessing the automation of control of the parameters of the methane-air mixture. Ugol’,2022, (11), pp. 84-88. (In Russ.).DOI: 10.18796/0041-5790-2022-11-84-88.

2. Balovtsev S.V., Skopintseva O.V. & Kulikova E.Yu. Hierarchical structure of aerological risks in coal mines. Ustojchivoe razvitie gornykh territorij, 2022;14(2): 276-285. (In Russ.). DOI: 10.21177/1998-4502-2022-14-2- 276-285.

3. Li Xiangong, Li Yu, Fa Ziwei & Alam Easar. Risk Assessment of Coal and Gas Outburst Accidents in Coal Mines Based on Factor Analysis and Logistic Regression. Gornyj informatsionno-analiticheskij byulleten, 2022;(10–1):116-127. (In Russ.). DOI: 10.25018/0236_1493_2022_101_0_116.

4. Qiao W. Analysis and measurement of multifactor risk in underground coal mine accidents based on coupling theory. Reliability Engineering & System Safety, 2021, (208), article 107433. DOI: 10.1016/j.ress.2021.107433.

5. Wang G., Ren H., Zhao G., Zhang D., Wen Z., Meng L. & Gong Sh. Research and practice of intelligent coal mine technology systems in China. International Journal of Coal Science & Technology, 2022, (9), article 24. DOI:10.1007/s40789-022-00491-3.

6.  Zholmanov D.K., Zinovieva O.M., Merkulova A.M. & Smirnova N.A. Assessment of risk management efficiency in mines. Gornyj informatsionno-analiticheskij byulleten, 2022;(10):166-176. (In Russ.). DOI: 10.25018/0236_1493_2022_10_0_166.

7. Li X., Cao Z. & Xu Y. Characteristics and trends of coal mine safety development. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020. DOI: 10.1080/15567036.2020.1852339.

8. Balovtsev S.V. & Skopintseva O.V. Assessment of the influence of returned mines on aerological risks at coal mines. Gornyj informatsionno-analiticheskij byulleten, 2021;(2–1):40-53. (In Russ.). DOI: 10.25018/0236-1493-2021-21-0-40-53.

9. Li F., He X., Zhang Yue, Wang Ch., Tang Jia & Sun R. Superposition risk assessment of the working position of gas explosions in chinese coal mines. Process Safety and Environmental Protection, 2022, (167), pp. 274-283. DOI:10.1016/j.psep.2022.09.017.

10. Tailakov O.V., Makeev M.P. & Utkaev E.A. Numerical modeling and laboratory testing of reservoir properties of coal. MIAB. Gornyj informatsionno-analiticheskij byulleten, 2022;(9):99-108. (In Russ.). DOI: 10.25018/0236_1493_2022_9_0_99.

11. Epshtein S.A. & Shinkin V.K. Quality indices of coals for different directions of use. Gornyj informatsionno-analiticheskij byulleten, 2022;(4):5-16. (In Russ.). DOI: 10.25018/0236_1493_2022_4_0_5.

12. Filin A.E., Ovchinnikova T.I., Zinovieva O.M. & Merkulova A.M. Advance of pulsating ventilation in mining. Gornyi Zhurnal, 2020, (3), pp. 67-71. (In Russ.). DOI: 10.17580/gzh.2020.03.13.

13. Cherdantsev S.V., Shlapakov P.A., Goloskokov S.I., Erastov A.Yu. & Khaymin S.A. Determination of the time intervals characterizing the various stages of combustion of the gas-air mixture in the mine working. Ugol’, 2022, (1), pp. 26-32. (In Russ.).DOI: 10.18796/0041-5790-2022-1-26-32.

14. Cherdantsev S.V., Filatov Yu.M. & Shlapakov P.A. Modes of diffusion combustion of fine dust-gas-air mixtures in the atmosphere of mine workings. Ugol’, 2020, (2), pp. 27-32. (In Russ.).DOI: 10.18796/0041-5790-2020-2-27-32.

15. Mamaev V.I., Ibraev Zh.A., Ligay V.A. et al.Prevention of explosions of dust-methane-air mixtures. Moscow, Nedra Publ., 1990, 159 p. (In Russ.).

16. Wu X., Cui J., Tong R. & Li Q. Research on Methane Measurement and Interference Factors in Coal Mines. Sensors, 2022;22(15):5608. DOI: 10.3390/s22155608.

17. Ganova S.D., Skopintseva O.V. & Isaev O.N. On the issue of studying the composition of hydrocarbon gases of coals and dust to predict their potential hazard. Bulletin Tomskogo Polytekhnicheskogo Inzhiniring Georesursov, 2019, Vol. 330, (6), pp. 109-115. (In Russ.).

18. Slastunov S.V., Kolikov K.S., Zakharova A.A. & Mazanik E.V. Selection of an effective technology for the degasification of coal beds. Solid Fuel Chemistry, 2015, Vol. 49, (6), pp. 381-386.

19. Zou C., Yang Zhi., Huang Sh., Ma F., Sun Q., Li F., Pan S. & Tian W. Resource types, formation, distribution and prospects of coal-measure gas. Petroleum Exploration and Development, 2019, Vol. 46, (3), pp. 451-462. DOI:10.1016/S1876-3804(19)60026-1

For citation

Rybichev A.A.On the question of evaluation of the influence of heavy hydrocarbons on the explosibility of dust-methane-air mixtures. Ugol’, 2023, (2), pp. 41-44. (In Russ.). DOI: 10.18796/0041-5790-2023-2-41-44.

Paper info

ReceivedNovember 30, 2022

Reviewed December 15, 2022

Accepted January 26, 2023


Hot from the press