UNDERGROUND MINING
Original Paper
UDC 622.35 © Yu.M. Lekontsev, P.V. Sazhin, 2024
ISSN 0041-5790 (Print) • ISSN 2412-8333 (Online) • Ugol’ – Russian Coal Journal, 2024, № 11S, pp. 86-90
DOI: ttp://dx.doi.org/10.18796/0041-5790-2024-11S-86-90
Title
RESEARCH INTO THE MOTION PATH OF THE FRACTURE FORMER CUTTER
Authors
Yu.M. Lekontsev, P.V. Sazhin
Federal Research Center for Coal and Coal Chemistry, Siberian Branch of the Russian Academy of Sciences, Kemerovo, 650065, Russian Federation e-mail: kvi194917@mail.ru
Authors Information
Lekontsev Yu.M. – Ph (Engineering), Senior Researcher, Institute of Coal, Federal Research Center for Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences, Kemerovo, 650065, Russian Federation, e-mail: kvi194917@mail.ru
Sazhin P.V. – Ph (Engineering), Senior Researcher, Institute of Coal, Federal Research Center for Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences, Kemerovo, 650065, Russian Federation, e-mail: pavel301080@mail.ru
Abstract
Mine studies into the application of the directional hydraulic fracturing (DHF) technology has proved the need to create initiating fractures (IF) on the borehole walls of the maximum possible diameter depending on the size of the borehole. It is suggested to increase this parameter by selecting a rational path of motion of the cutter during its extension. The existing schemes have been considered and analyzed for this purpose and the most rational one has been identified. Technical solutions and theoretical justifications of the fracture former parameters are presented, which ensure increased efficiency of implementing the directional hydraulic fracturing method. A brief review and analysis of the design features of devices intended to create the initiating fractures have been carried out. Parameters have been determined for a prospective design of the fracture former with lever kinematics of the cutter extension, which provide its maximum extension along the rational path to create the initiating fracture. Calculations of the cutter strength of the fracture former have been performed, and the required dimensions of its cross-section have been determined.
Keywords
Directional hydraulic fracturing, fracture former, cutter, initiating fracture, rock mass.
References
1. Леонтьев А.В., Попов С.Н. Опыт практического применения измерительного гидроразрыва // Горный журнал. 2003. № 3. С. 37-43. eontyev .V., Popov S.N. Practical experience of measurement hydrofracturing. Gornyi Zhurnal. 2003;(3):37-43. (In uss.).
2. Курленя М.В., Леонтьев А.В., Попов С.Н. Развитие метода гидроразрыва для исследования напряженного состояния массива горных пород // ФТПРПИ. 1994. № 1. С. 3-20. Kurlenya M.V., eontyev .V., Popov S.N. evelopment of the hydraulic fracturing method to investigate the stress state of the rock mass. Fiziko-tehnicheskie problemy razrabotki poleznykh iskopaemykh. 1994; (1):3-20. (In uss.).
3. Патент РФ № 129148. Щелеобразователь / Клишин В.И., Курленя М.В., Кокоулин Д.И. Опубл. в бюл. № 17 от 20.06.2013.
4. Сердюков С.В., Шилова Т.В., Рыбалкин Л.А. Оценка снижения риска подземной разработки газоносных угольных пластов при использовании гидроразрыва // Интерэкспо Гео-Сибирь. 2019. Т. 2. № 5. С. 3-11. Serdyukov S.V., Shilova .V., ybalkin .. isk reduction estimation for underground mining of gas-contained coal seams while using the hydraulic fracturing. Interekspo GEO-Sibir'. 2019;2(5):3-11. (In uss.).
5. ray I., Zhao X., iu . Mechanical properties of coal measure rocks containing fluids at pressure, Coal Operators’ Conf., Wollongong, ustralia, 2018, pp. 195-204.
6. Патент РФ № 2400624. Щелеобразователь / Леконцев Ю.М., Сажин П.В. Опубл. в бюл. № 27 от 27.09.2010.
7. Сажин П.В. Исследование траектории движения режущего органа щелеобразователя // Горняцкая смена. 2008. Т. 1. С. 8-14. Sazhin P.V. Studies of the motion path of the fracture former cutter. Gornyatskaiya smena. 2008;(1):8-14. (In uss.).
8. О форме трещин гидроразрыва породного массива в окрестности цилиндрической полости / С.В. Сердюков, А.В. Азаров, Л.А. Рыбалкин и др. // ФТПРПИ. 2021. № 6. С. 72-84. Serdyukov S.V., zarov .V., ybalkin .., Patutin .V. egarding the shape of the hydraulic fractures in rocks in vicinity of a cylinder-shaped void. Fiziko-tehnicheskie problemy razrabotki poleznykh iskopaemykh. 2021;(6):72-84. (In uss.).
9. Xia B., Zhang X., u B., Jia J. Weakening effects of hydraulic fracture in hard roof under the influence of stress arch. Int. J. Min. Sci. and Tech. 2018;28(6):951-958.
10. Chen Z., i X., usseault M.B., Weng . Effect of excavation stress condition on hydraulic fracture behavior // Eng. Fracture Mech. 2020;(226):106871.
11. Сажин П.В. Исследование режимов работы и герметических параметров режущего органа комбинированного устройства при создании инициирующих щелей // ФТПРПИ. 2018. № 2. С. 181-186. Sazhin P.V. Investigation of operation modes and sealing properties of the combined device cutter when creating initiating fractures. Fiziko-tehnicheskie problemy razrabotki poleznykh iskopaemykh. 2018;(2):181-186. (In uss.).
For citation
Lekontsev u.M., Sazhin P.V. Research into the motion path of the fracture former cutter. Ugol’. 2024;(11S):86-90. (In uss.). DOI:10.18796/0041-5790-2024-11S-86-90.
Paper info
Received September 15, 2024
Reviewed October 21, 2024
Accepted October 31, 2024