hi boy
"Ugol" magazin

UNDERGROUND MINING


Original Paper

 

UDC 622.831.322 © V.V. Sementsov, V.A. Gogolin, I.A. Ermakova, A.A. Isachenko, 2023

ISSN 0041-5790 (Print) • ISSN 2412-8333 (Online) • Ugol’ – Russian Coal Journal, 2023, № 4, pp. 37-41

DOI: http://dx.doi.org/10.18796/0041-5790-2023-4-37-41

 

Title

INFLUENCE OF THE RATE OF MOVEMENT OF THE TREATMENT FACE DURING THE DEVELOPMENT OF THE EXCAVATION SITE AT 48-8 OF THE YERUNAKOVSKAYA –VIII MINE BRANCH OF YUZHKUZBASSUGOL JSC ON THE CHANGE IN THE STATE OF THE NEAR-CONTOUR GEOMASS AFFECTING THE DEVELOPMENT OF EMERGENCY SITUATIONS

 

Authors

 

Sementsov V.V.1, Gogolin V.A.2, Ermakova I.A.2, Isachenko A.A.3

 

1JSC "NC VostNII", Kemerovo, 650002, Russian Federation

2T.F. Gorbachev Kuzbass State Technical University (KuzSTU), Kemerovo, 650000, Russian Federation

3"Yerunakovskaya-VIII" Mine branch, Novokuznetsk, 654000, Russian Federation

 

Authors Information

Sementsov V.V., PhD (Engineering), Head of the Laboratory of Mining Geomechanics, e-mail: v.sementsov@nc-vostnii.ru

Gogolin V.A., Doctor of Engineering Sciences, Professor, Professor of the Department of Mathematics

Ermakova I.A., Doctor of Engineering Sciences, Professor, Professor of the Department of Mathematics

Isachenko A.A., PhD (Engineering), Deputy Chief Technology Engineer

 

Abstract

The article presents the results of modeling the stress–strain state of the carboniferous massif in the lava 48 – 8 of the Yerunakovskaya – VIII mine branch and the effect of the speed of movement of the treatment face on the development of emergency situations in the lava working out the formation 48. The problem was solved by the finite element method taking into account the physico–mechanical properties of coal and the host rocks of the roof and soil of the formation. Based on the results of modeling and experience of cleaning operations on reservoir 48, the minimum speed of lava movement was found, at which no domes are formed in the cleaning space and no emergency situations occur.

 

Keywords

Stress–strain state, Cleaning works, Dome formation, Emergency situations, Optimal moving speeds.

 

References

1. Zenkevich O. The finite element method in engineering. Moscow, Mir Publ., 1975. (In Russ.).

2. Pirieva N.N. Determination of fracture zones in safety pillars during mining of flat coal seams. Abstract of thesis for Cand. eng. sci. diss. 25.00.20 / Pirieva Natalia Nikolaevna; [Place of viva examination: Gorbachev Kuzbass State Technical University], Kemerovo, 2017, 22 p. (In Russ.).

3. Documentation on coal extraction, roof support and control at mining site 48-8. Novokuznetsk, 2021, 143 p. (In Russ.).

4. Litvinsky G.G. Analytical theory of rock and rock mass strength. Donetsk: Nord-Press Publ., 2008, 207 p. (In Russ.).

5. Litvinsky G.G. Long-term strength patterns of rocks. Problemy gornogo davleniya, 2015, (1), pp. 94-106. (In Russ.).

6. Glushko V.T. & Vinogradov V.V. Failure of rocks and prediction of rock pressure manifestations. Moscow, Nedra Publ., 1982, 192 p. (In Russ.).

7. Gogolin V.A. Deformation and strength characteristics of very brittle rocks under compression. Vestnik Kuzbasskogo gosudarstvennogo tehnicheskogo universiteta, 2016, (3), pp. 3-8. (In Russ.).

8. Gass N. & Tabarrok B. Large deformation analysis of plates cylindrical shells bya mixed finite element method. Int. J. Numer. Meth. Eng., 1976, Vol. 10, (4), pp. 731-746.

9. Gellert M. & Laursen M.E. A new high-precision stress finite element for analysis of shell structures. Int. J. Solids and Struct, 1977, Vol. 13. (7), pp. 683-697.

10. Gran C.S. & Yang T.J. Doubly curved membrane shell finite element. J. Eng. Mech. Div. Proc. Amer. Soc. Civ. Eng., 1979. Vol. 105, (4), pp. 567-584.

11. Han К.J. & Gould P.L. Shells of revolution with local deviations. Int. J. Numer. Meth Eng., 1984, Vol. 20, (2), pp. 305-313.

12. Haugeneder E. A new penalty function element for thin shell analysis. Numerical Meth. in Eng., 1982, Vol. 18, (6), pp. 845-861.

13. Herpai B. & Paczelf I. Analysis of axisymmetrically deformed shells by the finite element displacement method. Acta techn. Acad. Sci. hung., 1977, Vol. 85, (1-2), pp. 93-122.

14. Hindenlang U. The TRUMP family of shell elements. ISD. Rept, 1978, (239), pp. 11-17.

15. Hsiao Kuo-Mo & Hung Hung Chan. Large defection analysis of shell structure by using corotational toallagrangian formulation. Comput. Meth. Appl. Mech. and Eng., 1989, Vol. 73, (2), pp. 209-225.

16. Jones Rembert F.Jr. A curved finite element for general thin shell structures. Nucl. Eng. And Des., 1978, Vol. 48, (2-3), pp. 415-425.

17. Jones D.P., Holliday J.E. & Larson L.D. Elastic plastic dailure analysis of pressure burst tests toroidal shells. Trans. ASME. J. Pressure Vessel Technol., 1999, Vol. 121, (2), pp. 149-153.

18. Kemp B.L., Chahngmin Cho & Sung W.L. A foirnode solid shell element formulation with assumed strain. Jut. J. Numer. Meth. Eng.,1998, Vol. 43, (5), pp. 909-924.

19. Kikuchi F., 0hya H. & Yoshi '0. Application of finite element method to axisymmetric buckling of shallow spherical shells under external pressure. J. Nucl. Sci. and Technol., 1973, Vol. 10, (6), pp. 339-347.

20. Kikuchi F. On the validity of an approximation available in the finite element shell analysis. Comput. and Struct., 1975, Vol. 5, (1), pp. 1-8.

21. Khan A.Q., Mufti A.A. & Harris P.J. Postbuckling of thin plates and shells. Var. Meth. Eng. Vol. 2. Proc. Int. Confi, Univ Southampton, 1972. Southampton, 1973, 7/54-7/65, Discuss, 7/124.

22. Lakshmiarayanga H.V. Finite element analysis of laminated composite shells functions. Comput. and Struct., 1976, Vol. 8, (1), pp. 11-15.

23. Lannoy F.G. Triangular finite elements and numerical integration. Comput. Struct., 1977, (7), pp. 613-625.

24. Lindberg G.M. & Olson M.D. A high-precision triangular cylindrical shell finite element. AIAA. J., 1971, (9), pp. 530-542.

25. Lo S.H. 3D mesh refinement in comliance with a specified node spacing function. Mechanics, 1998, (21), pp. 11-19.

 

For citation

Sementsov V.V., Gogolin V.A., Ermakova I.A. & Isachenko A.A. Influence of the rate of movement of the treatment face during the development of the excavation site at 48-8 of the Yerunakovskaya–VIII mine branch of Yuzhkuzbassugol JSC on the change in the state of the near-contour geomass affecting the development of emergency situations. Ugol’, 2023, (4), pp. 37-41. (In Russ.). DOI: 10.18796/0041-5790-2023-4-37-41.

 

Paper info

Received February 22, 2023

Reviewed February 25, 2023

Accepted March 27, 2023

SPECIAL ISSUE




Hot from the press
Partners